Integrated crop management practices for maximizing grain yield of double-season rice crop
نویسندگان
چکیده
Information on maximum grain yield and its attributes are limited for double-season rice crop grown under the subtropical environment. This study was conducted to examine key characteristics associated with high yielding double-season rice crop through a comparison between an integrated crop management (ICM) and farmers' practice (FP). Field experiments were conducted in the early and late seasons in the subtropical environment of Wuxue County, Hubei Province, China in 2013 and 2014. On average, grain yield in ICM was 13.5% higher than that in FP. A maximum grain yield of 9.40 and 10.53 t ha-1 was achieved under ICM in the early- and late-season rice, respectively. Yield improvement of double-season rice with ICM was achieved with the combined effects of increased plant density and optimized nutrient management. Yield gain of ICM resulted from a combination of increases in sink size due to more panicle number per unit area and biomass production, further supported by the increased leaf area index, leaf area duration, radiation use efficiency, crop growth rate, and total nitrogen uptake compared with FP. Further enhancement in the yield potential of double-season rice should focus on increasing crop growth rate and biomass production through improved and integrated crop management practices.
منابع مشابه
Maize productivity and nutrient use efficiency in Western Kenya as affected by soil type and crop management
Low soil fertility and high weed infestation are the main culprits for the declining maize production inWestern Kenya. Technology packages to address these constraints exist, but their effectiveness is likely to be influenced by variability in soil types and farm management practices in the region. Trials were conducted during the 2008/2009 cropping seasons to investigate the nutrient use e...
متن کاملCrop management techniques to enhance harvest index in rice.
A major challenge in rice (Oryza sativa L.) production is to enhance water use efficiency (WUE) and maintain or even increase grain yield. WUE, if defined as the biomass accumulation over water consumed, may be fairly constant for a given species in given climate. WUE can be enhanced by less irrigation. However, such enhancement is largely a trade-off against lower biomass production. If WUE is...
متن کاملEffect of crop residue and nitrogen levels in yield and yield attributing traits of rice under Rice-Wheat Cropping System
A 3- years (2015, 2016 and 2017) field study was carried out at National Wheat Research Program, Bhirahawa, Rupandehi, Nepal to evaluate the influence of crop residues and nitrogen levels on rice. The experiment was conducted in split plot design with three replications. Main plots were two crop residue levels (with crop residues of 30 cm wheat stubble and without crop residues) and sub plots c...
متن کاملEffect of crop residue and nitrogen levels in yield and yield attributing traits of rice under Rice-Wheat Cropping System
A 3- years (2015, 2016 and 2017) field study was carried out at National Wheat Research Program, Bhirahawa, Rupandehi, Nepal to evaluate the influence of crop residues and nitrogen levels on rice. The experiment was conducted in split plot design with three replications. Main plots were two crop residue levels (with crop residues of 30 cm wheat stubble and without crop residues) and sub plots c...
متن کاملThe relationships between carbon isotope discrimination and photosynthesis and rice yield under shading
The measurement of carbon isotope discrimination (∆) provides an integrated insight into theresponse of plants to environmental change. To investigate the potential use of ∆ for identifyingshade tolerance in rice, five rice varieties were selected and artificially shaded (53% lightreduction) during the grain-filling period in 2010 and 2011, in Sichuan, China. Shadingtreatment had a significant ...
متن کامل